

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra armasuisse Swiss Federal Office of Topography swisstopo

GNSS Tracking Issues

Stefan C. Schaer

- Current GNSS satellite constellation
- GLONASS negative frequency channels
- Improved IGS GNSS receiver coverage
- Survey of employed IGS GNSS receiver and antenna/ radome models
- Quarter-cycle issue (RINEX/RTCM)

GNSS Satellite Constellation

GPS Constellation: 31 Satellites

http://gge.unb.ca/Resources/GPSConstellationPlot.pdf

GPS PRN32 Tracking (1/2)

ftp://ftp.unibe.ch/aiub/igsdata/tracking_prn32_sum.txt:

AOA BENCHMARK ACT	:	100% 100%	(19	of	19)
AOA SNR-12 ACI		100%	(1	of	4)
ACA SNR-8000 ACT		100%	(1	of	1)
ACA SINK-SIUU ACI	÷	100%	(51	of	1) 51)
ASHTECH Z-X		100%	(1	of	1)
ASHTECH Z-XII3	:	100%	ì	56	of	56)
ASHTECH Z-XII3T	:	100%	(14	of	14)
ASHTECH Z18	:	50%	(2	of	4)
BLACKJACK	:	100%	(2	of	2)
JPS EGGDT	:	100%	(5	of	5)
JPS EUROCARD	:	100%	(1	of	1)
JPS E_GGD	:	100%	(7	of	7)
JPS LEGACY	:	100%	(22	of	22)
LEICA CRS1000	:	100%	(2	of	2)
LEICA GRX1200	:	100%	(2	of	2)
LEICA GRX1200GGPRO	:	100%	(32	of	32)
LEICA GRX1200PRO	:	100%	(3	of	3)
LEICA RS500	:	100%	(1	of	1)
NOV EUR04-1.00-222	:	100%	(1	of	1)
NOV OEMV3	:	100%	(2	of	2)
ROGUE SNR-8000	:	100%	(5	of	5)
SEPT POLARX2	:	100%	(б	of	6)
TPS EGGDT	:	100%	(1	of	1)
TPS EUROCARD	:	100%	(1	of	1)
TPS E_GGD	:	100%	(12	of	12)
TPS GB-1000	:	100%	(4	of	4)
TPS LEGACY	:	100%	(3	of	3)
TPS NET-G3	:	100%	(1	of	1)
TPS NETG3	:	100%	(4	of	4)
TPS ODYSSEY_E	:	100%	(4	of	4)
TRIMBLE 4000SSE	:	100%	(2	of	2)
TRIMBLE 4000SSI	:	100%	(9	of	9)
TRIMBLE 4700	:	100%	(2	of	2)
TRIMBLE 5700	:	100%	(2	of	2)
TRIMBLE NETR5	:	100%	(22	of	22)
TRIMBLE NETRS	:	808	(17	of	21)
TOTAL	:	98%	(:	326	of	332)

GPS PRN32 Tracking (2/2)

ftp://ftp.unibe.ch/aiub/igsdata/tracking_prn32_not_ready.txt:

ASHTECH	Z18	0065		:	gope
ASHTECH	Z18	0065	ZT16	:	mtka
TRIMBLE	NETRS	0.4-1 G27	OCT 2005	:	pgc5
TRIMBLE	NETRS	1.1-5		:	amu2
TRIMBLE	NETRS	NP 1.13 /	SP 0.00	:	ssia
TRIMBLE	NETRS	NP 1.15 /	SP 0.00	:	kgni

GLONASS Constellation: 13+3(+1)

http://gge.unb.ca/Resources/GLONASSConstellationPlot.pdf

CODE GNSS Monitoring

EPN LAC Meeting, Frankfurt, Germany, October 22-23, 2008 Swiss Federal Office of Topography swisstopo

Number of GNSS Stations Tracking a Specific GPS/GLONASS Satellite (for April 2008)

0

Number of GNSS Stations Tracking a Specific GPS/GLONASS Satellite (for April 2008)

0

GLONASS Negative Frequency Channels

ftp://ftp.unibe.ch/aiub/igsdata/tracking_glo_neg_freq_not_ready.txt:

bako:	R11	R15	LEICA GRX1200GGPRO	5.00/3.013	
cagz:			TPS E_GGD	3.1 MAR,13,2007	P2
crar:			TPS ODYSSEY_E	2.5 JUN,22,2005	P1
ctwn:	R11 R13	R15 R17	TRIMBLE NETR5	N/A	
ilha:	R11	R15	LEICA GRX1200GGPRO	5.10	
mobj:			TPS LEGACY	2.3 APR,28,2004	P4
mtbg:	R11	R15	TPS GB-1000		
mtka:			ASHTECH Z18	0065 ZT16	
park:			JPS E_GGD	2.5	
pous:			TPS GB-1000	2.5 APR,07,2005	P1B1
snec:			TPS GB-1000	2.5 JUN,22,2005	P1
sydn:			JPS E_GGD	2.3P3	
tixj:			TPS ODYSSEY_E	2.5 JUN,22,2005	P1
tsea:	R11	R15	LEICA GRX1200GGPRO	4.10	
unpg:			TPS ODYSSEY_E	3.1 JUN,28,2007	₽3
ven1:			ASHTECH Z18	0065 ZT16	
vesl:	R13		TPS GB-1000	3.1 JUN,28,2007	₽3

GNSS Receiver Network as Used in CODE's Final Analysis (for GPS Weeks 1497-1498)

227 GNSS stations:158 GPS-only (70%) + 69 GPS/GLONASS (30%)

GNSS Receiver Network as Used in CODE's Final Analysis (for GPS Weeks 1499-1500)

250 GNSS stations:160 GPS-only (64%) + 90 GPS/GLONASS (36%)

Validation of CODE's GLONASS 1-Day Final Orbit Consistency

IGLOS Final Orbit Combination

http://www.ngs.noaa.gov/igsacc/WWW/

GNSS Receiver Models

GNSS Antenna/Radome Combinations

GNSS Receiver Antenna Models (1/2)

AOAD/M_B	DUTD	1	IGS05_1499	ADOPTED	from	NONE
AOAD/M_B	OSOD	1	IGS05_1499	ADOPTED	from	NONE
AOAD/M_T	AUST	1	IGS05_1499	ADOPTED	from	NONE
AOAD/M_T	DOME	1	IGS05_1499	ADOPTED	from	NONE
AOAD/M_T	JPLA	1	IGS05_1499	ADOPTED	from	NONE
AOAD/M_T	NONE	4	IGS05_1499	ROBOT		
AOAD/M_T	OSOD	5	IGS05_1499	ADOPTED	from	NONE
ASH700936C_M	SNOW	1	IGS05_1499	ROBOT		
ASH700936D_M	NONE	1	IGS05_1499	ROBOT		
ASH701073.1	NONE	1	IGS05_1499	COPIED		
ASH701073.1	SCIS	1	IGS05_1499	ADOPTED	from	NONE
ASH701073.1	SNOW	1	IGS05_1499	ADOPTED	from	NONE
ASH701941.B	NONE	1	IGS05_1499	CONVERTE	ED	
ASH701941.B	SCIT	1	IGS05_1499	ADOPTED	from	NONE
ASH701941.B	SNOW	2	IGS05_1499	ADOPTED	from	NONE
ASH701945B_M	NONE	1	IGS05_1499	COPIED		
ASH701945C_M	NONE	4	IGS05_1499	COPIED		
ASH701945C_M	OSOD	1	IGS05_1499	ADOPTED	from	NONE
ASH701945C_M	SNOW	1	IGS05_1499	ROBOT		
ASH701945E_M	NONE	2	IGS05_1499	COPIED		
ASH701945G_M	AUST	1	IGS05_1499	ADOPTED	from	NONE
ASH701946.3	NONE	1	IGS05_1499	COPIED		
JPLD/M_R	NONE	1	IGS05_1499	CONVERTE	ED	
JPSREGANT_DD_E	NONE	10	IGS05_1499	ROBOT		
JPSREGANT_SD_E	NONE	5	IGS05_1499	ROBOT		
LEIAT504	NONE	1	IGS05_1499	ROBOT		
LEIAT504GG	LEIS	11	IGS05_1499	ROBOT		
LEIAT504GG	NONE	10	IGS05_1499	ROBOT		
LEIAX1202GG	NONE	3	IGS05_1499	FIELD		
NOV702GG	NONE	1	IGS05_1499	ROBOT		
TPSCR.G3	TPSH	1	IGS05_1499	ROBOT		
TPSCR3_GGD	CONE	17	IGS05_1499	FIELD		
TPSCR3_GGD	NONE	3	IGS05_1499	FIELD		
TPSCR3_GGD	PFAN	1	IGS05_1499	ROBOT		
TPSG3_A1	NONE	1	IGS05_1499	FIELD		
TRM29659.00	NONE	4	IGS05_1499	ROBOT		
TRM29659.00	TCWD	1	IGS05_1499	ROBOT		
TRM29659.00	UNAV	1	IGS05_1499	FIELD		
TRM55971.00	NONE	15	IGS05_1499	ROBOT		

0

GNSS Receiver Antenna Models (2/2)

AOAD/M B	מייות	1	TGS05 1499	ADOPTED	from	NONE
AOAD/M B	OSOD	1	IGS05 1499	ADOPTED	from	NONE
AOAD/M T	AUST	1	IGS05 1499	ADOPTED	from	NONE
AOAD/M_T	DOME	1	IGS05_1499	ADOPTED	from	NONE
AOAD/M_T	JPLA	1	IGS05_1499	ADOPTED	from	NONE
ASH700936C_M	SNOW	1	IGS05_1499	ROBOT		
ASH700936D_M	NONE	1	IGS05_1499	ROBOT		
ASH701073.1	NONE	1	IGS05_1499	COPIED		
ASH701073.1	SCIS	1	IGS05_1499	ADOPTED	from	NONE
ASH701073.1	SNOW	1	IGS05_1499	ADOPTED	from	NONE
ASH701941.B	NONE	1	IGS05_1499	CONVERTE	D	
ASH701941.B	SCIT	1	IGS05_1499	ADOPTED	from	NONE
ASH701945B_M	NONE	1	IGS05_1499	COPIED		
ASH701945C_M	OSOD	1	IGS05_1499	ADOPTED	from	NONE
ASH701945C_M	SNOW	1	IGS05_1499	ROBOT		
ASH701945G_M	AUST	1	IGS05_1499	ADOPTED	from	NONE
ASH701946.3	NONE	1	IGS05_1499	COPIED		
JPLD/M_R	NONE	1	IGS05_1499	CONVERTE	D	
LEIAT504	NONE	1	IGS05_1499	ROBOT		
NOV702GG	NONE	1	IGS05_1499	ROBOT		
TPSCR.G3	TPSH	1	IGS05_1499	ROBOT		
TPSCR3_GGD	PFAN	1	IGS05_1499	ROBOT		
TPSG3_A1	NONE	1	IGS05_1499	FIELD		
TRM29659.00	TCWD	1	IGS05_1499	ROBOT		
TRM29659.00	UNAV	1	IGS05_1499	FIELD		
ASH701941.B	SNOW	2	IGS05_1499	ADOPTED	from	NONE
ASH701945E_M	NONE	2	IGS05_1499	COPIED		
LEIAX1202GG	NONE	3	IGS05_1499	FIELD		
TPSCR3_GGD	NONE	3	IGS05_1499	FIELD		
AOAD/M_T	NONE	4	IGS05_1499	ROBOT		
ASH701945C_M	NONE	4	IGS05_1499	COPIED		
TRM29659.00	NONE	4	IGS05_1499	ROBOT		
AOAD/M_T	OSOD	5	IGS05_1499	ADOPTED	from	NONE
JPSREGANT_SD_E	NONE	5	IGS05_1499	ROBOT		
JPSREGANT_DD_E	NONE	10	IGS05_1499	ROBOT		
LEIAT504GG	NONE	10	IGS05_1499	ROBOT		
LEIAT504GG	LEIS	11	IGS05_1499	ROBOT		
TRM55971.00	NONE	15	IGS05_1499	ROBOT		
TPSCR3_GGD	CONE	17	IGS05_1499	FIELD		

0

Quarter-Cycle Issue: Identified Problems

- Observation codes cannot distinguish between L2(P) and L2(L2C)
- Problem because of ¼-cycle phase shift of L2(L2C) w/r to L2(P)
 - If L2C- and P-code derived L2 phases are combined in an analysis, ambiguity-resolution can be jeopardized, if these phase shifts are not taken into account
- Need some agreement for version 2.11 how to handle this

Quarter-Cycle Issue: Controversial Discussion

 Should all phases be shifted to a common reference, if necessary, before generating RINEX files?

or

- Should all phase observations be stored in the "original" state and leave the task to do the necessary corrections to the user?
- E-Mail discussion in "RINEX group" (distribution list of ~45 addresses): <u>http://www.aiub.unibe.ch/download/rinex/L2C/</u>

Quarter-Cycle Issue: Phase Corrections: Pros

- The receiver knows what it is doing, i.e. it knows its tracking mode.
 → It can do the corrections to an accepted standard
- The manufacturer-provided RINEX converter knows what the receiver did store in the proprietory format: The converter can do the corrections
- The user does not have to deal with these corrections. He can freely mix observables without having to bother with corrections.
- No changes to many existing programs
- Keep things simple for the user. Modern GNSS signals will be complicated enough to deal with
- If the receiver just stores what comes out of its tracking loops: Is it sure that this phase really follows the general assumptions?

Quarter-Cycle Issue: Phase Corrections: Cons

- RINEX philosophy till now: No "external" corrections to the data
- Are we sure that the corrections have been applied correctly? Or applied at all?
- How to apply a priori corrections if the RINEX converter does not know the tracking mode or the signal-generation mode of the satellite ("flex power")?
 - \rightarrow Same problem, of course, holds for the users!
 - Flex power will not generate phase shifts (statement in recent presentation in Los Angeles)
- Who is setting the standards?
- What happens with the existing data?

Quarter-Cycle Issue: Phase Corrections: Current Status

- Trimble:
 - Shifts L2(L2C) by ¼ cycle
 - Correction procedure for all currently tracked signals available
- Leica/Novatel
 - Probably no corrections to L2C for the time being
- Septentrio
 - Currently no corrections for RINEX 3.0
 - Proposes to correct to standard
- RTCM: Discussions under way. Probably going for a standard
- Geo++
 - Proposes to store unchanged phases into RINEX

Quarter-Cycle Issue: Some Facts

- No corrections are necessary for a specific receiver/station if only one tracking mode per frequency for all satellites
- It's not important if all phases observed by a receiver in mode A are aligned to mode B or if all phases of mode B are aligned to mode A
 - Double-difference processing (ambiguity resolution OK)
 - Zero-difference processing (ambiguity resolution OK, if possible...)
 - PPP
- If one decides to apply corrections, do them
 - either to a commonly accepted, general standard
 - or to a "receiver-internal standard" in case of mixed modes

Quarter-Cycle Issue: Decision

- Should be taken by the RINEX group in the very next future
- Comments to <u>gurtner@aiub.unibe.ch</u>
- Hopefully in agreement with RTCM (...)

\rightarrow Correction for Bernese SW 5.0

v Summary

- Current GNSS satellite constellation \rightarrow GLONASS (??)
- GLONASS negative frequency channels → GNSS receiver firmware updates (and "antiquated" receiver models)
- Improved IGS GNSS receiver coverage → significantly improved GLONASS orbit quality
- Quarter-cycle issue (RINEX/RTCM) → consensus not yet reached

Baseline Vector Repeatability on the Basis of GPS-Only or GPS/GLONASS

