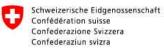
CODE Contributions to the IGS

R. Dach¹, S. Schaer^{1,2}, D. Arnold¹, E. Orliac¹, L. Prange¹, A. Sušnik¹, A. Villiger¹, A. Jäggi¹

¹ Astronomical Institute, University of Bern, Switzerland ² Swiss Federal Office of Topographie, swisstopo


> EUREF 2015 AC Workshop 14.-15. October 2015, Bern, Switzerland

The CODE Analysis Center

- CODE, Center for Orbit Determination in Europe, is one of at present ten Analysis Centers of the IGS. CODE is formed as a joint venture of
 - the Astronomical Institute of the University of Bern (AIUB),
 - the Swiss Federal Office of Topography (swisstopo),
 - the Institut f
 ür Kartographie und Geodäsie (BKG), and
 - the Institut f
 ür Astronomische und Physikalische Geodäsie of TU München (IAPG, TUM).

Overview

CODE Ultra-Rapid Solution

CODE Rapid Solution

CODE Final Solution

Reprocessing Solution (CODE and AIUB)

CODE MGEX Solution

Number of stations: 90

Satellite systems: GPS+GLONASS

Number of stations: 90

Satellite systems: GPS+GLONASS

Schedule, latency: **07:00**, 10:00, **12:00**, 15:00, **18:00**, 21:00, **24:00** UTC

available about 1 to 2 hours after the launch of the job

R. Dach et al.: CODE Contributions to the IGS EUREF 2015 AC Workshop, 14.–15. October 2015,

CODE Ultra-Rapid Solution

Number of stations: 90

Satellite systems: GPS+GLONASS

Schedule, latency: **07:00**, 10:00, **12:00**, 15:00, **18:00**, 21:00, **24:00** UTC

available about 1 to 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX (only from 24:00 solution)

Number of stations: 90

Satellite systems: GPS+GLONASS

Schedule, latency: **07:00**, 10:00, **12:00**, 15:00, **18:00**, 21:00, **24:00** UTC

available about 1 to 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX (only from 24:00 solution)

Remarks:

 Only the latest solution is published on a stable filename: ftp://ftp.unibe.ch/aiub/CODE/COD.???_U.

Number of stations: 90

Satellite systems: GPS+GLONASS

Schedule, latency: **07:00**, 10:00, **12:00**, 15:00, **18:00**, 21:00, **24:00** UTC

available about 1 to 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX (only from 24:00 solution)

Remarks:

- Only the latest solution is published on a stable filename: ftp://ftp.unibe.ch/aiub/CODE/COD.???_U.
- The orbit and ERP files contain a prediction for 24 hours (with only reliably predictable satellites are included).

Number of stations: 90

Satellite systems: GPS+GLONASS

Schedule, latency: **07:00**, 10:00, **12:00**, 15:00, **18:00**, 21:00, **24:00** UTC

available about 1 to 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX (only from 24:00 solution)

Remarks:

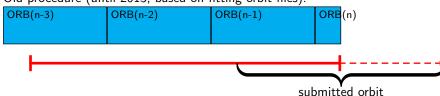
- Only the latest solution is published on a stable filename: ftp://ftp.unibe.ch/aiub/CODE/COD.???_U.
- The orbit and ERP files contain a prediction for 24 hours (with only reliably predictable satellites are included).
- Description in Lutz et al. (2014): "CODE's new ultra-rapid orbit and ERP products for the IGS".

How the solution is generated?

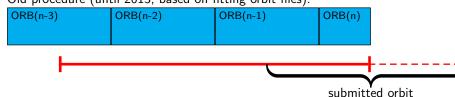
o in procedure (aritin 2010), based on meaning orbit mean,				
ORB(n-2)	ORB(n-1)	ORB(n)		

How the solution is generated?

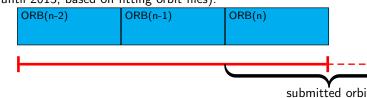
old procedure (until 2019, based on fitting orbit mes).			
ORB(n-2)	ORB(n-1)	ORB(n)	


How the solution is generated?

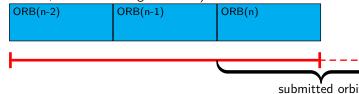
|--|

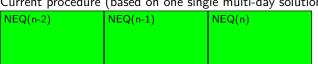

How the solution is generated?

How the solution is generated?

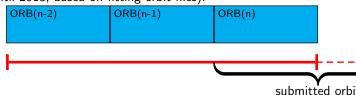

How the solution is generated?

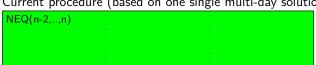
How the solution is generated?


Old procedure	(until 2013, based	on nitting orbit me	=5).	
ORB(n-3)	ORB(n-2)	ORB(n-1)	ORB(n)	
0112(110)	0.12(1.2)	0.12(1.2)	0.12()	
				-
				Y
			suhmit	tted orbit

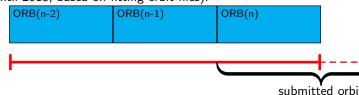

How the solution is generated?

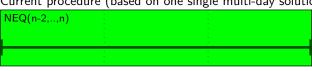
How the solution is generated?


Old procedure (until 2013, based on fitting orbit files):

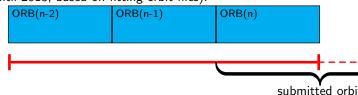


How the solution is generated?


Old procedure (until 2013, based on fitting orbit files):

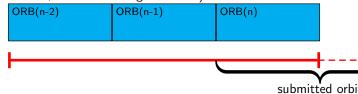


How the solution is generated?

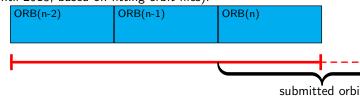

Old procedure (until 2013, based on fitting orbit files):



How the solution is generated?

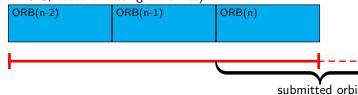

Old procedure (until 2013, based on fitting orbit files):

How the solution is generated?

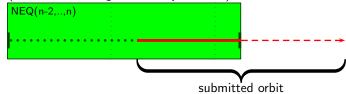

Old procedure (until 2013, based on fitting orbit files):

How the solution is generated?

Old procedure (until 2013, based on fitting orbit files):



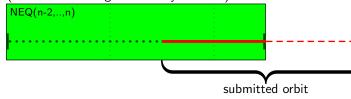
Current procedure (based on one single multi-day solution):



How the solution is generated?

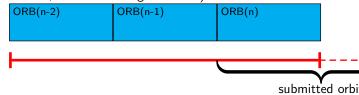
Old procedure (until 2013, based on fitting orbit files):

Current procedure (based on one single multi-day solution):

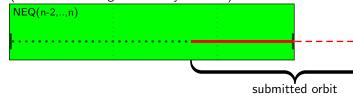


How the solution is generated?

Old procedure (until 2013, based on fitting orbit files):

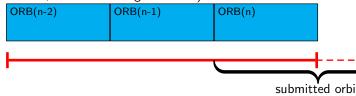


Current procedure (based on one single multi-day solution):

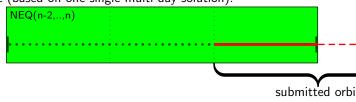


How the solution is generated?

Old procedure (until 2013, based on fitting orbit files):



Current procedure (based on one single multi-day solution):



How the solution is generated?

Old procedure (until 2013, based on fitting orbit files):

Current procedure (based on one single multi-day solution):

Number of stations: 120

Satellite systems: GPS+GLONASS

Number of stations: 120

Satellite systems: GPS+GLONASS

Schedule, latency: IGSRAPID: 05:15 UTC; RCLKGNSS: 06:00, 13:30 UTC

available about 2 hours after the launch of the job

R. Dach et al.: CODE Contributions to the IGS EUREF 2015 AC Workshop, 14.–15. October 2015,

CODE Rapid Solution

Number of stations: 120

Satellite systems: GPS+GLONASS

Schedule, latency: IGSRAPID: 05:15 UTC; RCLKGNSS: 06:00, 13:30 UTC

available about 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX(crd), clock

Number of stations: 120

Satellite systems: GPS+GLONASS

Schedule, latency: IGSRAPID: 05:15 UTC; RCLKGNSS: 06:00, 13:30 UTC

available about 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX(crd), clock

Remarks:

 The rapid solutions are removed from the FTP server if the final solution is published.

Number of stations: 120

Satellite systems: GPS+GLONASS

Schedule, latency: IGSRAPID: 05:15 UTC; RCLKGNSS: 06:00, 13:30 UTC

available about 2 hours after the launch of the job

Available products: orbit, ERP, tropo, SINEX(crd), clock

Remarks:

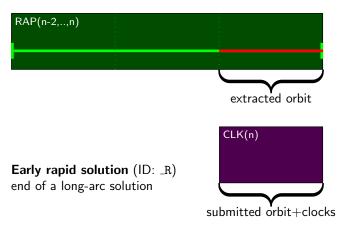
• Two versions of the rapid solution are made available: ftp://ftp.unibe.ch/aiub/CODE/COD{wwwwd}.???_R and ftp://ftp.unibe.ch/aiub/CODE/COD{wwwwd}.???_M.

"early rapid solution" "final rapid solution"

 The rapid solutions are removed from the FTP server if the final solution is published.

Why CODE is providing two rapid solutions?

NEQ(n-2)	NEQ(n-1)	NEQ(n)


Why CODE is providing two rapid solutions?

RAP(n-2)	RAP(n-1)	ULT(n)

RAP(n-2)	RAP(n-1)	RAP(n)	

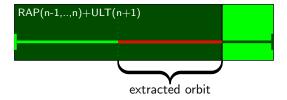
Why CODE is providing two rapid solutions?

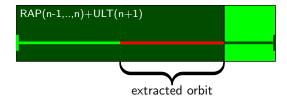
Why CODE is providing two rapid solutions?

Why CODE is providing two rapid solutions?

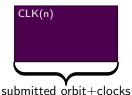


Why CODE is providing two rapid solutions?




Why CODE is providing two rapid solutions?

Why CODE is providing two rapid solutions?



Why CODE is providing two rapid solutions?

Early rapid solution (ID: _R) end of a long-arc solution

Final rapid solution (ID: _M) middle of a long-arc solution

R. Dach et al.: CODE Contributions to the IGS EUREF 2015 AC Workshop, 14.–15. October 2015, Bern

1

2

Astronomical Institute, University of Bern **AIUB**

Number of stations: 250

Satellite systems: GPS+GLONASS

R. Dach et al.: CODE Contributions to the IGS EUREF 2015 AC Workshop, 14.–15. October 2015, Bern

1

2

Astronomical Institute, University of Bern **AIUB**

Number of stations: 250

Satellite systems: GPS+GLONASS

Schedule, latency: published on Thursday after the end of the week

1

2

Astronomical Institute, University of Bern **AIUB**

Number of stations: 250

Satellite systems: GPS+GLONASS

Schedule, latency: published on Thursday after the end of the week

Available products: orbit, ERP, tropo, SINEX(crd), clock (only GPS) ftp://ftp.unibe.ch/aiub/CODE/{yyyy}/COD{wwwwd}.???

1

R. Dach et al.: CODE Contributions to the IGS EUREF 2015 AC Workshop, 14.–15. October 2015, Bern

Satellite systems: GPS+GLONASS

Schedule, latency: published on Thursday after the end of the week

Available products: orbit, ERP, tropo, SINEX(crd), clock (only GPS) ftp://ftp.unibe.ch/aiub/CODE/{yyyy}/COD{wwwwd}.???¹

The "final rapid solution" with the GLONASS clocks is copied to ftp://ftp.unibe.ch/aiub/CODE/{yyyy}_M/COD{wwwwd}.???

Number of stations: 250

Satellite systems: GPS+GLONASS

Schedule, latency: published on Thursday after the end of the week

Available products: orbit, ERP, tropo, SINEX(crd), clock (only GPS) ftp://ftp.unibe.ch/aiub/CODE/{yyyy}/COD{wwwwd}.???1

Remarks:

- Two versions of the final solution are computed: "clean one-day final solution" 2 cod "three-day long-arc solution"
- The "three-day long-arc solution" is strongly recommended if you are interested in the orbits!!!

¹The "final rapid solution" with the GLONASS clocks is copied to ftp://ftp.unibe.ch/aiub/CODE/{yyyy}_M/COD{wwwwd}.??? ²only submitted to the CDDIS server

Clock densification in the CODE final solution:

Clock densification in the CODE final solution:

(processing by GPSEST, combination by CCRNXC) 300 s sampling: full zero-difference network solution in 3 clusters with about 45 stations each introducing the geometry from the one- and three-day solution, resp.

Clock densification in the CODE final solution:

(processing by GPSEST, combination by CCRNXC) 300 s sampling: full zero-difference network solution in 3 clusters with about 45 stations each introducing the geometry from the one- and three-day solution, resp.

30 s sampling: (processing by CLKEST) interpolation based on phase (epoch-difference) observations using the daily/hourly RINEX observation files

Clock densification in the CODE final solution:

(processing by GPSEST, combination by CCRNXC) 300 s sampling: full zero-difference network solution in 3 clusters with about 45 stations each introducing the geometry from the one- and three-day solution, resp.

30 s sampling: (processing by CLKEST) interpolation based on phase (epoch-difference) observations

using the daily/hourly RINEX observation files

(processing by CLKEST) 5 s sampling:

further interpolation based on phase (epoch-difference) observations using the high-rate RINEX files generated from real-time streams

This product is suited for high-rate applications up to 1 Hz.

Reprocessing Solution (CODE and AIUB)

Number of stations: up to 300

Satellite systems: GPS+GLONASS (GLONASS since 2002)

Reprocessing Solution (CODE and AIUB)

Number of stations: up to 300

Satellite systems: GPS+GLONASS (GLONASS since 2002)

Schedule, latency: most recent effort as the contribution to the IGS repro02 (1994-2013)

Number of stations: up to 300

Satellite systems: GPS+GLONASS (GLONASS since 2002)

Schedule, latency: most recent effort as the contribution to the IGS repro02 (1994-2013)

Available products: orbit, ERP, tropo, SINEX(crd), (no clocks) ftp://ftp.unibe.ch/aiub/REPRO_2013/CODE/{yyyy}/COD{wwwwd}.??? Number of stations: up to 300

Satellite systems: GPS+GLONASS (GLONASS since 2002)

Schedule, latency: most recent effort as the contribution to the IGS repro02 (1994-2013)

Available products: orbit, ERP, tropo, SINEX(crd), (no clocks) ftp://ftp.unibe.ch/aiub/REPRO_2013/CODE/{yyyy}/COD{wwwwd}.???

Remarks:

processing strategy from Summer 2013 used

Reprocessing Solution (CODE and AIUB)

Number of stations: up to 300

Satellite systems: GPS+GLONASS (GLONASS since 2002)

Schedule, latency: most recent effort as the contribution to the IGS repro02 (1994-2013)

Available products: orbit, ERP, tropo, SINEX(crd), (no clocks) ftp://ftp.unibe.ch/aiub/REPRO_2013/CODE/{yyyy}/COD{wwwwd}.???

Remarks:

- processing strategy from Summer 2013 used
- a new series is currently under generation (including clocks) publication planned for the beginning of 2016 either still in IGb08 or ITRF2014 reference frame

The current reprocessing effort is done in the context of the EGSIEM project (European Gravity Service for Improved Emergency Management).

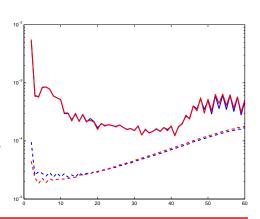
R. Dach et al.: CODE Contributions to the IGS EUREF 2015 AC Workshop, 14.–15. October 2015, Bern

Reprocessing Solution (CODE and AIUB)

The current reprocessing effort is done in the context of the EGSIEM project (European Gravity Service for Improved Emergency Management).

Internal validation procedure:

- GPS orbits and satellite clock corrections (done by Andreja Sušnik)
- GRACE orbits based on a PPP-based kinematic solution (done by Daniel Arnold)
- monthly gravity field based on GRACE orbits and K-band (done by Ulrich Meyer)


The current reprocessing effort is done in the context of the EGSIEM project (European Gravity Service for Improved Emergency Management).

Degree variances of a monthly GPS + K-Band solution(Jan. 2012):

Solution AIUB-RL02 (60) Solution based on the recent repro (dashed lines: formal errors)

Differences to the static part of the a priori gravity model AIUB_GRACE03S, scaled to geoid heights in meters.

CODE MGEX Solution

CODE MGEX Solution

Number of stations: 120

Satellite systems: GPS+GLONASS+Galileo+BeiDou+QZSS

CODE MGEX Solution

Number of stations: 120

Satellite systems: GPS+GLONASS+Galileo+BeiDou+QZSS

Schedule, latency: published on Thursday after the end of the week

Number of stations: 120

Satellite systems: GPS+GLONASS+Galileo+BeiDou+QZSS

Schedule, latency: published on Thursday after the end of the week

Available products: orbit, ERP, clocks, biases

ftp://ftp.unibe.ch/aiub/CODE_MGEX/{yyyy}/COD{wwwwd}.???

Number of stations: 120

Satellite systems: GPS+GLONASS+Galileo+BeiDou+QZSS

Schedule, latency: published on Thursday after the end of the week

Available products: orbit, ERP, clocks, biases

ftp://ftp.unibe.ch/aiub/CODE_MGEX/{yyyy}/COD{wwwwd}.???

Remarks:

available (nearly) consistent since beginning of 2014

Number of stations: 120

Satellite systems: GPS+GLONASS+Galileo+BeiDou+QZSS

Schedule, latency: published on Thursday after the end of the week

Available products: orbit, ERP, clocks, biases

ftp://ftp.unibe.ch/aiub/CODE_MGEX/{yyyy}/COD{wwwwd}.???

Remarks:

- available (nearly) consistent since beginning of 2014
- extracted from a three-day long-arc solution
- more details on this solution: Dach et al. (2015): "Updating the CODE GNSS Orbit Model"

Operational real-time or near real-time solutions: ultra-rapid orbit solutions for GPS and GLONASS Operational real-time or near real-time solutions: ultra-rapid orbit solutions for GPS and GLONASS

Operational PPP-solutions including GPS and GLONASS: early or final rapid solution (depending on the timeline)

Operational real-time or near real-time solutions: ultra-rapid orbit solutions for GPS and GLONASS

Operational PPP-solutions including GPS and GLONASS: early or final rapid solution (depending on the timeline)

Operational post-processing solutions including GPS and GLONASS: rapid or final solution (depending on the timeline)

Operational real-time or near real-time solutions: ultra-rapid orbit solutions for GPS and GLONASS

Operational PPP-solutions including GPS and GLONASS: early or final rapid solution (depending on the timeline)

Operational post-processing solutions including GPS and GLONASS: rapid or final solution (depending on the timeline)

Operational ultra high-rate PPP solutions (below 30 s sampling): final ultra high-rate clock solution (including the corresponding orbits and ERPs)

Operational real-time or near real-time solutions: ultra-rapid orbit solutions for GPS and GLONASS

Operational PPP-solutions including GPS and GLONASS: early or final rapid solution (depending on the timeline)

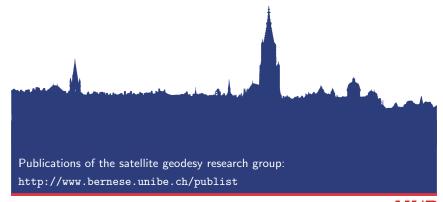
Operational post-processing solutions including GPS and GLONASS: rapid or final solution (depending on the timeline)

Operational ultra high-rate PPP solutions (below 30 s sampling): final ultra high-rate clock solution (including the corresponding orbits and ERPs)

Consistent long-term solutions for reference frame purposes: most recent reprocessing solution

Operational real-time or near real-time solutions: ultra-rapid orbit solutions for GPS and GLONASS

Operational PPP-solutions including GPS and GLONASS: early or final rapid solution (depending on the timeline)


Operational post-processing solutions including GPS and GLONASS: rapid or final solution (depending on the timeline)

Operational ultra high-rate PPP solutions (below 30 s sampling): final ultra high-rate clock solution (including the corresponding orbits and ERPs)

Consistent long-term solutions for reference frame purposes: most recent reprocessing solution

Experimental solutions going behind GPS/GLONASS: MGEX solution (also for PPP)

