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Abstract 

New satellite systems such as the European Galileo and the ongoing modernization of GPS and 

GLONASS, allow for improvements in accurate positioning. Real Time Kinematic (RTK) is a system that 

utilises Global Navigation Satellite Systems (GNSS) to provide accurate positioning in real time. In this 

paper, we describe the error sources in network-RTK, and how the increased number of satellites and 

new signals are best served to achieve the desired improvement in performance. Using simulations 

we find that the inclusion of future satellite systems such as Galileo and Compass can reduce the 

error in the vertical coordinate of the estimated position from 27 mm to 20 mm for a reference 

network with 70 km between the reference stations. For periods with high spatial variability in the 

ionosphere, it is important to consider the tradeoff between influence from the ionosphere and from 

the local environment. A densified network with 35 km between the reference stations results in a 

similar improvement as the contribution of the new satellite systems. The error in the estimated 

vertical coordinate is reduced from 27 mm to 18 mm. Using both a densified network and the new 

satellite systems reduces the error further down to 13 mm. 

Introduction 
Real Time Kinematic (RTK) is a system that utilises Global Navigation Satellite Systems (GNSS) to 

provide accurate positioning in real time. The general idea in RTK is to receive GNSS-signals at a 

stationary reference with a known position and to use this information to correct measurement data 

at a roving receiver in another location. The ideal signal is perturbed by ionosphere, troposphere and 

imperfections related to ephemerides, clocks and multipath (historically also Selective Availability, 

SA) and thus the calculated position differs from the known. By calculating corrections that 

mathematically “moves” the reference to its known position and subsequently apply a similar set of 

corrections to the rover, the rover’s position can also be determined very accurately. As the 

reference and rover are at different locations, the signals have been perturbed differently and the 

correction data are therefore affected by uncertainties that compromise the reliability of the rover’s 

corrected position. The factors that affect the uncertainties can be classified in different ways, e.g. 

distance dependent, systematic, random, site specific, rapid, frequency dependent (dispersive). 



With RTK it is also implicit that, in addition to the broadcast code signals that are handled by 

relatively cheap off-the-shelf products, the carrier phase of the signal is analysed with a geodetic 

type receiver. With this technique there is a potential for obtaining position coordinates with 

accuracies of the order of 1 cm. The difference between RTK and network-RTK is that the latter 

combines data from several reference stations to provide the rover with corrections. With network-

RTK the distance dependent errors are interpolated between the reference stations, which allows for 

increased distance between reference stations without losing position accuracy. More on network-

RTK can be found in e.g., Landau et al. [2002], Rizos and Han, [2003], Lim and Rizos [2008]. 

 

Background 
In order to study the different error sources in network-RTK applications, we model the signal 

received by a single GNSS receiver. The phase observed by a rover (A) and a reference receiver (B) 

can be described by (1) and (2) respectively, where   is the measured phase in fraction of cycles,  is 

the signal wavelength,  is the true geometrical distance between the receiver and the satellite, N  

is the integer number of cycles referred to as the ambiguity parameter and f  is the signal 

frequency. The s
t and r

t  represent the satellite and receiver clock errors respectively, 
o
  is the 

error in the reported satellite orbital model, 
t

 is the signal delay in the lower part of the 

atmosphere referred to as the troposphere, 
i

 is the signal delay in the ionosphere part of the 

atmosphere,   is signal multipath, and  is receiver measurement error.  
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Forming the difference between the observed signals at the rover and the reference stations, we 

obtain an observable, denoted with subscript D, that can be used for determining the vector 

between the rover and reference positions. By multiplying (1) and (2) with the signal wavelength and 

subtracting them, we obtain a phase difference measurement: 
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Here, we assume that the local integer ambiguities, N, are resolved. Hence, we can write the 

displacement range  as: 
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Where we have now combined the signal multipath,  , and receiver measurement error, into a 

local effect, 
e

  



That is the sought displacement range equals the phase measurement difference including the errors 

in satellite clocks, local clocks, satellite orbits, delay in the ionosphere, delay in the troposphere, and 

local effects. Below, we describe the different error sources and explain how they influence the 

network-RTK position estimates. 

Modelling Assumptions 
We assess position estimation errors by mathematically studying the influence of the error sources 

presented above. We assume a network configuration as outlined in Figure 1. The distance, dref, 

between the reference stations is 70 km. When positioning a rover as depicted in Figure 1 as a blue 

circle, we assume the use of information from the surrounding reference stations. In our 

configuration, the use of measurements from six surrounding reference stations is simulated. Three 

of those form an inner triangle and the rest form an outer triangle. 

 

70 km

 

Figure 1 Network configuration. The reference stations are shown in red (inner triangle) and green (outer 
triangle) and the rover is shown in blue.  

 

Here the distance from the rover to any reference station in the inner triangle is  

3/
refa

dd       (5) 

and the distance from the rover to a reference station in the outer triangle is 

3/2
refb

dd       (6) 

where in the nominal situation dref = 70km. Hence the interpolated phase, which constitutes a virtual 

reference station [Landau et al., 2002], at the site of the rover can be written as:  
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Where we choose the weights wa=2/9 and wb=1/9 for the inner and outer reference station data 

respectively. This choice is a trade off between an optimal choice for atmospheric interpolation 

where we benefit from higher weights on the stations in the inner triangle and optimal choice for 

local effects where an optimal weighing would be wa=wb=1/6. 

In forming (7) we assume that broadcast satellite positions and a priori atmospheric delay are 

removed from the phase observables before the summation above. We also assume that all a priori 

phase ambiguities are fixed to integer values. Ambiguity fixing can be difficult under certain 

conditions. However in this report, we do not cover this field. We focus on measurement accuracy 

given that the fixed integer values are correct. We assume that no structural variations or systematic 

errors in the reference network exist. We assume no height variations in the reference network. This 

effect is described in the section about troposphere influence. We assume that the operator uses the 

equipment correctly and not introduce additional errors by erroneous handling. 

The baseline approach in this paper is to study the use of L1 observations only. All observations are 

weighted with respect to their elevation angle. The weighing function we use is sin(). Different 

weighting functions in GNSS processing has been presented, e.g.,   Rotacher et al. [1997], Jin et al. 

[2005]. However, simulations show that the choice of weighting function in network-RTK applications 

has a rather insignificant impact on the final results. Using the chosen weighting reduces the impact 

of the tropospheric delay by 10% compared to the use of equal weights. Hence, we have not tried to 

imitate any specific software in this respect. We use observation above a cutoff angle of 13o. This 

value is within the typical range commonly used in GPS processing today. We also assume that the 

rover estimates 4 parameters, namely its east, north, height coordinates, and its local clock offset to 

the virtual reference station. The integration time of the observations for the rover is one sample. In 

our study, we have used a satellite constellation based on GPS and GLONASS during two weeks, from 

GPS week 1491 and 1492. This is the time period from August 3, 2008 to August 16, 2008. In the 

paper, we also refer to what we call future GNSS. By that we mean full constellations of GPS, 

GLONASS, Galileo, and Compass.  

Error Modelling 
In order to estimate the measurement errors in network-RTK, we need to model the different 

contributions in (4) and simulate a network with 70 km between the reference stations. The errors in 

satellite clocks and orbit information will not significantly affect measurements with network-RTK 

due to the interpolation technique used, see (7). The error in the estimated position due to local 

clock errors in the receivers is removed in the processing of the GNSS data being one of the 

estimated parameters; see the section on modelling assumptions. We will thus focus on the errors in 

the signal delay in the ionosphere, signal delay in the troposphere, and local effects as specified in 

(4). Below we describe how the covariances of these errors are modelled.  

Ionosphere 
The ionosphere is the upper part of the atmosphere (approx 100-1000 km) that is ionised by solar 

radiation. It is a dispersive medium at GNSS frequencies. That is, the refractive index depends on the 

signal frequency. A consequence of this property is that the GPS signal delays on L1 and L2 are 

different. Hence a technique to remove a large part of the contribution from the ionosphere is to 



form a linear combination of the L1 and L2 phase observables L1 and L2 usually referred to as the L3 

combination [e.g., Hoffman-Wellenhof et al, 1994]  

22113 LLL
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where c1 and c2 are approximately 2.55 and -1.55 respectively.  Another common practice is to use 

the L1 phase observable only which is suitable for short baselines where ionospheric variations to a 

large extent are cancelled when differencing observations from rover and reference receivers. We 

model the error contribution from the ionosphere
i
 on the observations of n simultaneously visible 

satellites by describing a diagonal covariance matrix  
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where the diagonal elements are 
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where d  is the distance between the reference stations in our network configuration (see the 

section on models assumptions), f  is the signal frequency, n  is the number of satellites and 
i

m  is 

the ionospheric mapping function [Klobuchar, 1996] 
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where R is the radius of the Earth, is the elevation angle,  and we assume that the ionosphere is  a 

thin layer at a height, h=400 km. This model of the ionospheric error contribution fits reasonably well 

with GPS data from Scandinavia from the years 2003 and 2008 [Emardson et al., 2009]. Using this 

data set, we find the value 2 for  . The parameter 
io

 varies significantly with time. In the 

calculations presented in this paper we use a mean value, 2.641011 Hz2, obtained over the years 

2003 and 2008. We use this model for distances up to a few hundred kilometres.  

 

Troposphere 
The troposphere is the lower part of the atmosphere, usually below 10 km. For simulation purposes 

we divide the signal delay contribution from the troposphere into two parts, namely a hydrostatic 

part and a wet part, which is the delay component due to water vapour. 

Hydrostatic delay 

The hydrostatic delay is larger than the wet delay. It is approximately 2 m in the zenith direction. It is, 

however, relatively easy to suppress due to very strong horizontal spatial correlation. The vertical 

hydrostatic delay is almost perfectly correlated with the local atmospheric pressure [e.g., 



Saastamoinen, 1972]. A relatively strong pressure gradient of say 4 mbar over a distance of 100 km 

results in a difference in the zenith delay of 10 mm over the same distance. This delay gradient is 

relatively smooth as it follows the pressure gradient and hence a linear combination such as (3) 

cancels this effect almost completely. 

When the reference stations and the rover or a virtual reference station are at different heights, the 

hydrostatic delay difference has to be taken into account. A combination of large height and 

temperature differences between reference and rover locations may result in slightly incorrect rover 

position estimates. We have not included this effect further in the analysis in this paper. However, 

for geographical areas with large topographical variations this effect should be taken into 

consideration. 

 

Wet delay 

The wet delay is much smaller than the hydrostatic delay, typically below 30 cm in the Nordic 

countries. However, because of its relatively high spatial and temporal variability it is usually a more 

serious error source in GPS applications.  Because the signal delay in the troposphere is relatively 

close to the surface, the delays of the signals from the different satellites are correlated, in difference 

to the ionospheric delay. We model the covariance of the error contribution by using a model for the 

spatial distribution of its refractivity component, the wet refractivity . By using structure functions, 

D of the wet refractivity, we can express the covariances of the slant wet delay as [Emardson et al., 

2009] 
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for station 1 and 2 and the signals from satellite i and j respectively, where 

k
m  is the wet mapping function [Niell, 1997] to satellite k  and the integration is performed along 

the local verticals at the two stations. The wet refractivity structure function for two locations A and 

B with position vectors, 
A

r  and 
B

r , can be modelled as: 
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when the vertical components
A

v and
B

v  of 
A

r and 
B

r are both <1000 m. Otherwise 0


D . Here dAB 

is the distance between A and B. 

We use the values 9.0  and 9.0152
1057.5


 mC


. [e.g., Treuhaft and Lanyi, 1987, Jarlemark, 

1997, Nilsson, 2008] in the simulations in this paper.  

 As seen in (11), the covariance is expressed for the situation with a rover and one reference station, 

i.e., station 1 and 2 in (11). An expression for a reference network which is based on weighted sums 

of the covariances in (11) can be found in Emardson et al.  [2009]. 

 



Local Effects 
As for the effect of the ionosphere, we can use information obtained at several frequencies in order 

to mitigate the local effects. A linear combination, 
a

L , formed in order to reduce the local antenna 

and environmental effects can be written as [Emardson and Jarlemark, 2009] 
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The weighting of the observables L1 and L2 are chosen so that this combined observable 
a

L  can be 

useful when the contribution from the ionosphere is relatively small and the local effects are 

relatively large. We can also form a linear combination, 
o

L , which minimises the combined effect of 

the ionosphere and the local effects. 
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In our simulations, we model the error contribution from the local effects as a diagonal covariance 

matrix 
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where the diagonal elements are: 
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and we use 
eo

  equal to 2.1 mm for L1 observations and 2.6 mm for L2 observations  [Emardson et 

al., 2009]. These values are of the same order as values published by Mader [1999] based on GPS 

antenna calibrations. We use 
ek

m  equal to 1/sin(k) for observations at an elevation k. 

Error Propagation 
The different error sources described in the previous sections will affect the vertical and horizontal 

coordinates of the estimated position depending primarily on their elevation dependence. In order to 

determine how much the different error sources contribute to the errors we use the model 

vHxz        (17) 

Here the vector z contains the measurement errors due to the ionosphere, troposphere, and local 

effects. This vector can be formed as different combinations of the observables at the L1 and L2 

frequencies. In this paper, we model L1 only observations for the basic scenario. We have also used 

the combinations L3 and Lo from (8) and (14) respectively. The vector x contains the parameters we 

want to estimate, and these are the rover position in three dimensions and a receiver clock offset. 

The matrix H contains the partial derivatives matching the estimates with the measurement errors, 

and primarily depends on the satellite constellation used, see the section on modelling assumptions. 



In our simulations, we have processed the data with 1 minute intervals except for the troposphere 

that we update once per hour. We have used an elevation cutoff angle of 13o and the observations 

are weighted with w=sin(), see the section on modelling assumptions. Using this weighting, we form 

W as a diagonal matrix with the values w on the diagonal. Using this modelling approach, we could 

generate random errors based on the statistical representation of the errors. We have chosen, 

however, to calculate the errors in the estimated parameters as: 
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In this paper, we assume the error contributions are uncorrelated. Hence we can write 
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and simulate the different error contributions separately. 

 

 

Results 

Current Situation 
We can now summarize and quantify the various error sources that affect the quality of the 

measurements with network-RTK. In this paper we focus on the vertical coordinate of the estimated 

positions. For a typical satellite constellation for the period in 2008 and normal atmospheric 

conditions we get a 1-sigma error in the vertical coordinate of the estimated position, which is 

27 mm. This error is based on modeling measurements made on the L1 frequency. Figure 1 shows 

the contributions to this total error from three different error sources, ionosphere, troposphere, and 

local effects. The contributions from the ionosphere and troposphere dominate, with troposphere 

contribution slightly larger than that from the ionosphere. We must be aware that the contribution 

of the ionosphere will increase as we get closer to next solar maximum around 2012. A method for 

reducing the contribution from the ionosphere is to use the L3 combination of the L1 and L2 

observables from (8). This combination is largely insensitive to variations in the ionosphere. In the 

figure are also the contributions from the three error sources from the L3-use. The total error in the 

vertical coordinate is still about 27 mm. However, the contribution from the ionosphere is reduced to 

virtually zero. However, this has been at the expense of the local errors, which is now a significant 

error contribution of the same magnitude as the contribution from the troposphere. In many RTK 

processing systems a combination of the L1 and L2 observable are used. We illustrate this using the 

Lo observable from (14). Results using this combination are shown in the figure with blue bars. It is 

clear from the figure that the contribution from the troposphere is not affected by the choice of 

observable combination due to its non-dispersive effect on the GNSS signals. 
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Figure 2 Error contribution from the three error sources for for L1 (red), L3 (green), and Lo (blue) processing. 

 

Future Situation 
Based on the modeling described above, we can predict the accuracy we can attain using systems 

under development and by a densification of the reference network. Figure 2  shows the estimated 

error components in network RTK for a few different scenarios. These are (1) the current situation as 

described in previous sections with a reference station interdistance of 70 km, (2) the availability of 

future GNSS constellations, (3) a densification of the reference network to 35 km, and (4) a 

combination of (2) and (3). As we explained above, we have an error in the estimated vertical 

coordinate of about 27 mm with the current situation. The access to new GNSS reduces this error to 

about 20 mm.  Approximately the same effect is obtained from a densification of the reference 

network to 35 km between the reference stations. A combination of both would reduce errors down 

to 13 mm in the vertical coordinate.  
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Figure 3 Errors in network RTK for different scenarios all based on L1 processing only. 

  

Studying the various scenarios in more detail, we can see the size of the different error contributions. 

Figure 4 shows the error contribution from the three error sources ionosphere, troposphere and the 

local effects for the current situation. The figure also show the presumed results when we have 

access to new GNSS. These results are displayed for cutoff angle of both 13o and 25o. Using a higher 

cutoff angle results in a slightly better accuracy when more satellites are available than today. New 

GNSS provides, compared with the current configuration, a reduction in the error contribution from 

the ionosphere and the local effects. The contribution from the troposphere is not affected. 

However, if we raise the elevations-cutoff-angle to say 25o, the contributions are somewhat 

redistributed. The contribution from the ionosphere increases compared to when using the lower 

cutoff angle. The contribution from the troposphere, however, decreases when we increase the 

cutoff angle. The contribution from the local effects is largely unchanged. The total error in the 



estimated vertical coordinate is about 20 mm when we have access to new GNSS.  
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Figure 4 Error contribution from the three error sources for nominal (red), new GNSS with an elevation cutoff of 
13

o
 (black), and new GNSS with an elevation cutoff of 25

o
 (green striped). Results are based on L1 

processing only. 

 

As shown in Figure 3, the overall results from the availability of new GNSS and from a densified 

reference network are relatively similar. We can now study the separate error contributions for these 

scenarios. Figure 5 shows the error contributions from the three error sources ionosphere, 

troposphere and the local effects at the current situation, with access to new GNSS and a densified 

network of 35 km between reference stations. The overall errors are about 20 mm for both new 

GNSS and for a densified reference network. The advantage with a densified reference network, 

compared to access to new GNSS, is in the reduced contribution from the ionosphere. Also the 

contribution of the troposphere is reduced compared with the current situation, although not as 

much as when we have access to new GNSS. The error contribution from the local effects is not 

affected by a densification of the reference network. 
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Figure 5 Error contribution from the three error sources for nominal (red), new GNSS (green striped), and 
densified network (yellow dotted). 

 

Conclusions 
We have studied the expected uncertainty from measurements with network-RTK by modeling the 

contribution error sources. For standard Scandinavian conditions and a reference network with 70 

km between the reference stations, we find an uncertainty in the vertical coordinate of a measured 

position of 27 mm.  The introduction of future satellite systems such as Galileo and Compass with for 

the user a greater availability of transmitting satellites can reduce the error from the present 27 mm 

to 20 mm using the same reference network. With more transmitting satellites, a higher cutoff angle 

may be beneficial. A densified reference network of 35 km between reference stations provides a 

similar improvement in performance as the availability of new satellite systems, i.e., a reduction in 

the error from 27 mm to 18 mm. Using both a densified network and the new satellite systems 

reduces the error in the estimated vertical coordinate further down to 13 mm. Periodically, the 

contribution of the ionosphere can be assumed to be a dominant error sources in network-RTK. For 

those periods it is important to consider the trade-off between suppressing the effect from the 

ionosphere and suppressing the local effects. 
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