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SUMMARY

This paper presents an algorithm for GNSS carrieasp positioning based on some
properties of Ambiguity Function Method. There sstage of ambiguity search/resolution in
the presented approach, since there is no ambigaitgmeter in the proposed adjustment
model. The integer nature of the ambiguities isuegt$ in the results through the least squares
adjustment with condition equations in the funcilomodel. Therefore the proposed method
is robust to cycle slip effect. Also, an approgidtinction for the condition equations is
presented and tested here. The new approach requtesequent processing of the linear
combinations of GNSS signals in the cascade adprdtnihe presented numerical tests were
performed using in-house developed GINPOS softvame GPS data sample collected by
Polish GNSS network - ASG-EUPOS.

1. INTRODUCTION

There are two groups of unknowns in the Global Nation Satellite System (GNSS) carrier
phase data processing. The first group containsvedaed unknowns (e.g. coordinates); the
second one consists of carrier phase initial integebiguities. Currently, the most popular
algorithms of precise positioning are based ontlinee stage procedure of the Integer Least
Square Adjustment (Teunissen 1995):

» float solution (neglecting integer nature of soraegmeters)

e ambiguity resolution (AR) (search for integer amiliig parameters)

« fixed solution (introducing integer ambiguities).
In the first stage, the solution in real number domfor all unknowns is obtained. In the
second stage, the procedure of searching for ttegen ambiguities with the validation
process is carried out. Finally, in the third state remaining real-valued unknowns (e.g.,
coordinates) are solved again by introducing fixetger ambiguities. Thus this (classic)
approach requires the additional stage of the amtlyigresolution. The values of the
ambiguities are computed explicitly which in turagquires cycle slip detection and repairing.
The procedure of searching for the most probableegaof the ambiguities is performed in
previously determined (limited) search space. Giilyeas the most efficient method of AR is
considered the LAMBDA method (Teunissen 1995; Tesem 1995; Chang et al. 2005).

1/7



Ambiguity Function Method (AFM) is one of the altative approaches. This method takes
advantage of certain properties of the chosen geerfanctions, which have known values for
the integer arguments (Counselman and Gourevit&i;1Remondi 1990; Mader 1990; Han
and Rizos 1996). Although this method has good ema#tical bases, it is less popular than
classic approach. This paper presents a new agpfoaGPS carrier phase positioning based
on certain properties of AFM. The presented apprascalled MAFA (Modified Ambiguity
Function Approach) (Cellmer et al. 2010). The MARRorithm ensures the condition of
parameter “integerness* without the necessity theradditional stage of the integer search. It
is based on the least squares adjustment (LSA)itdgo with condition equations in the
functional model. In order to derive such functiomaodel an appropriate formula for
function of the condition equation is used ancegibelow.

However, the derived functional model is relativelyak. Hence, in order to assure the
appropriate convergence of the computational psydesear combinations (LC) of;land L,
GPS carrier phase observables are applied in $e@da adjustment, e.g., the computations
are performed successively for different linear borations (Han and Rizos 1996; Jung and
Enge 2000).

2. THE CONDITIONAL EQUATION OF THE CARRIER PHASE OBSERVATION

The simple form of the observation equation for lWeudifferenced (DD) carrier phase
observable can be written as follows (Leick 200&4ffman-Wellenhof et al. 2008;
Teunissen and Kleusberg 1998):

d+v=1p(X.)+ N 1)

where:
® — DD carrier phase observable (in cycles)
A —signal wave length
v —residual (measurement noise)
X¢ — receiver coordinate vector
p(Xc) — DD geometrical range
N — integer number of cycles (DD initial ambiguity)

Each term in equation (1) is expressed in the wihitarrier cycles. There are two
groups of parameters in this equation. The firstigrconsists of three real-value receiver
coordinates (included ip) and the second group consists of an integer-vVaie
ambiguity (N).

In general case the first group may contain addtigparameters: ionospheric and
tropospheric delays, etc. However, it does notcaftee course of the computational
process of the presented methodology.

The equation (1) can be rewritten as:

G+v-3p(X) =N ()

For the simplicity, the termp (X.) is represented gs in the subsequent equations.

Typically, carrier phase measurement accuracy igboiut 0.01 cycle (Hofmann-
Wellenhof et al. 2008). Thus the residual valuesukhbe much lower than half a cycle.
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Hence, taking into account the integer nature efdmbiguity parameter N, the equation
(2) can be rewritten in the following form:
®+v -2p = round(® Lp) 3)

or
v =round(® +p)-(P 2p) (4)

whereround is a function of rounding to the nearest integdug. Note that the residuals
(4) taken into account the integer nature of amb&gi N. LSA procedure requires
linearization of the right side of the equation. (Bdr the purpose of linearization, in the
papers Cellmer (2009) and Cellmer et al. (2010¢ #uthors proposed differentiable
function in the place of the term on the right smlethe equation (4). That function,
however, had some points of discontinuity. Hereneav differentiable and continuous
function is proposed:

—larcsin[sinﬁ s)lfor§{ s:cos( & }0
W =round(s) s n ’ (5)
Earcsin[sin(‘ts)]for@{ s:cos( }O

where s is an auxiliary variable:

s=d-1p (6)
The derivative of¥ is:
oW _o¥ os (7)
0X, 0s 0X,
It is easy to proof that:
o -1, for £IR ®)
0s
and
Os __19p 9)
oX. AoX
Hence, after Taylor series expansion:
_w-10p (10)
v=¥ _XG_XC‘XC" X +W(X )
or
(11)
1 .0p op ap 1 1
=—(=—|y dx+—|, dy+—|, dz)+ roundp —-— -—P, >
=l ay‘xco y+ ol d2) €10y -0

where, %o = [Xo, Yo, Z0] iS the vector of approximate coordinates @gds the corresponding
approximate double differenced geometric distaneavéen the station and the satellite
whereas: dx, dy, dz are elements of the unknowanpater vector X.

The residual equations (11) are formed for each DD carrier phase observations. General
formula of the residual equations can be showherfollowing form:

= JAX+A, (12)
with:
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X = [dx,dy,dz] (13)

[0 91 9py ]
0X ay 0z
9, 9P Opy

A= 2 ¥ % (14)

9y 90 by
| ox ay 0z |

A =round(® —£p, ) = (P -4p,) (15)

where:
V — residual vector (nx1),
X — parameter vector (increments to a priori cauatks vector ¥,
A — design matrix (nx3),
A — misclosuresector (n x1),
n — number of DD observations.

3. ADJUSTMENT PROBLEM

Adjustment problem can be formulated as:
VTPV = min (16)

where:
V — residual vector, equation (12),
P — weight matrix.
The solution of this problem is the following pareter vector:

X = -AATPA'ATPA (17)
together with its covariance matrix:
Cx=0Z N (ATPA)? (18)

The ambiguity parameters are not present in thaetkadjustment model. Nevertheless,
the above formulation gives results that fulfilleticondition of the integer ambiguities.
Therefore, there is no need to deal with, e.g.lecstip effects.

4. ALGORITHM OF THE CASCADE ADJUSTMENT WITH SUBSEQUENT
LINEAR COMBINATIONS

In case of equations (12) written for phase obsems on the first frequency (GPSQ)L
the objective function of the LSA procedure (16} hmany local minimums. In case of
insufficient quality of the parameter vector appnoation, the solution may be found in
any local minimum instead of te global one (whére actual correct solution exists). The
final correct solution depends on sufficiently @a@gpproximation of parameter values X.
In order to solve this problem, different LC of land L, observations with integer
ambiguities and longer wavelengths may be appliedble 1 presents the linear
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combinations used in the proposed method, alonk thiir wavelengths (Han and Rizos
1996).

Table 1 Linear combinations of L1 and L2 signaithwnteger ambiguity

LC# | ] A[m]
1 -3 4 1.6281
2 1 -1 0.8619
3 1 0 0.1903

The above linear combinations were chosen basédeoanalyses of theoretical properties
of these combinations (Han and Rizos 1996) andheiasis of large number of numerical
tests performed.

In the computation process the adjustment is choig for observation sets created
for the linear combinations. The adjustment takasegsuccessively in order listed in
Table 1, namely starting from LC with the longesivelength.

5. NUMERICAL EXAMPLE

Test surveys were performed on Md} 007, 8:30:00-10:30:00 UT on 25 km baseline,
with 30-second sampling rate. The selected statavaslocated in southern Poland and
belong to the national active geodetic network -GABJPOS. Figure 1 illustrates the
location of the test baseline. Station TARG serasd simulated user receiver. Two hour
data set was divided into 24, five minutes (10 égddong sessions. The sessions were
processed using the proposed methodology. Thecfirséct solution was usually obtained
after processing just 1 epoch of data. Next sahgtivere obtained adding the data from
the consecutive epochs in the sequential adjustnReierence coordinates were derived
with Bernese software using 10-hour data set (2aet., 2007).

. '
OFLE
& ® LELD
ey TaRs iE
kﬁum PRICS
i
Yooz
& Elh:ﬁ'_u.w
e gl
[] b
MWWTS
L]

Fig. 1 ASG-EUPOS stations in south part of Poland aedtseline (25 km) analyzed in the
experiment

Figure 2 presents N, E and U component residuath, nespect to “true” position
from Bernese.

517



In the presented example only two sessions (8:58-8nd 8:55-9:00) did not give
a good solution. In most of the sessions the soistconverged already in the first epoch.
Only in two sessions the solutions stabilized latee session starting at 8:40 converged in
the second epoch and the session starting at 9rifhe fourth epoch. The example was
carried out only in order to test the feasibilifytbe MAFA method. The data sample size
was insufficient to give an opportunity to draw awgnclusions concerning its qualitative
properties. Therefore acceptable is the statemeadt the results obtained so far are
promising and the method is worth of the furthesegerch.
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Fig. 2 N, E and U component residuals in [m] wikpect to the reference position.
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6. CONCLUSIONS

The new method for carrier phase-based GPS pasitjomas presented in this paper. It has
been shown that the new method enables precisep@8ifoning without the necessity of
explicit computation of the carrier phase DD amiiigg, although the condition of their
“integerness” is fulfilled. The advantages of theegented method are: simplicity and
robustness to cycle slip effects. The tests shogh hefficiency when processing short
observational sessions over 25-km baseline usiegaili combination of L1 and L2 signals.
Hence, in our opinion, the proposed methodology bmguccessfully used for carrier phase
GPS data processing in geodetic applications. Hewdurther research and tests are required
in order to fully validate the proposed approach.
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